Design and Implementation of JPEG 2000 Codec with
Bit-Plane Scalable Architecture

Yu-Wei Chang, Chih-Chi Chen, Chun-Chia Chen, Hung-Chi Fang, and Liang-Gee Chen, Fellow, IEFE

Abstract— In this paper, an area-efficient JPEG 2000 codec is im-
plemented on 6.1 mm? with 0.18 ym CMOS technology dissipating 180
mW at 1.8 V and 60 MHz. It is capable of processing 78 MS/s for
lossy coding at 1 bpp and 50 MS/s for lossless coding. Four techniques
are used to implement this chip. The pre-compression rate-distortion
optimization (pre-RDO) determine truncation points before coding to
reduce computations for the EBC. The dataflow conversion and embedded
compression reduces the tile memory bandwidth. The bit-plane parallel
context formation enables scalable bit-plane coding. Experimental results
shows this chip has higher area efficiency than the previous works.

I. INTRODUCTION

JPEG 2000 [1] is well-known for its excellent coding efficiency
and rich functionalities, such as scalability, region of interest, error
resilience, and so on. Figure 1 shows the functional block diagram
of the JPEG 2000 encoder. Unlike JPEG, JPEG 2000 uses discrete
wavelet transform (DWT) as the transformation algorithm and em-
bedded block coding with optimized truncation (EBCOT) as the
entropy-coding algorithm. EBCOT is a two-tiered algorithm. Tier-1
is the embedded block coding (EBC), which uses adaptive arithmetic
coder, and tier-2 is post-compression Rate-Distortion optimization
(post-RDO), which provides optimal image quality at a target bit
rate.

In a JPEG 2000 coding system, the EBC occupies 53% of total
computation[2]. Therefore, hardware implementation of the EBC is
a must for real-time applications. Many EBC architectures|[2][3][4]
has been proposed. All of them are bit-plane sequential architectures,
which process a code-block bit-plane by bit-plane. Besides, all of
them require an on-chip SRAM to store state variables. However,
the sequential processing results low throughput. To solve this prob-
lem, the word-level EBC architectures[5][6] is proposed to encode
or decode one DWT coefficient per cycle regardless of bit-width.
Therefore, the code-block memory is eliminated and the throughput
of the EBC is dramatically increased.

Although the word-level EBC architecture can achieve low internal
memory and high throughput, the area efficiency is degraded in
lossy coding. As shown in Fig. 2, the average numbers of effective
bit-planes are less than half of the bit-width of a DWT coefficient
when bit rate is smaller than 2 (compression ratio>4). The effective
bit-planes mean that the bit-planes not truncated after rate control.
The rate control in JPEG 2000 is a post-compression rate-distortion
optimization algorithm, which decides optimal truncation points after
entropy coding. The computational power and hardware resources of
the EBC are wasted since the source image must be losslessly coded
regardless of the target bit rate. Therefore, the area efficiency of the

This work was supported in part by National Science Council, Republic of
China, under the grant number 95-2752-E-002-008-PAE, and in part by the
MediaTek Fellowship.

Yu-Wei Chang, Chih-Chi Chen and Liang-Gee Chen are with DSP/IC
Design Lab, Graduate Institute of Electronics Engineering and Department of
Electrical Engineering, National Taiwan University, Taipei, Taiwan. (e-mail:
{wayne, ccc, lgchen }@video.ee.ntu.edu.tw)

Chun-Chia Chen was with DSP/IC Design Lab, Graduate Institute of
Electronics Engineering and Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan. He is now with the MediaTek Corp., Ltd.,
Hsinchu 300, Taiwan, R.O.C (e-mail: chunchia@video.ee.ntu.edu.tw)

1-4244-0383-9/06/$20.00 ©2006 |IEEE

Rate Control

DWT

EBCOT
Image
Source Discrete Uniform Embedded Rate-Distortion || Codestream
— Wavelet - Scalar —r Block Coding = Optimization [—#»
Transform Quantization (EBC) (RDO)
Transform Quantization Entropy Coding
Fig. 1. Functional block diagram of the JPEG 2000 encoder.

Numbers of bit-plane

—=—lena

——baboon

—e— pepper

Bitrate
(bpp)

Fig. 2. Average numbers of effective bit-planes. The effective bit-planes are
the bit-planes that are not truncated by the post-RDO.

word-level architecture is quiet low since more than half of bit-planes
are truncated finally but are encoded by more than half of processing
elements. For example: If an EBC architecture, which can process
four bit-planes in parallel, is used, as shown in Fig. 2, the throughput
of this architecture is the same as that of the word-level architecture
when bit rate is 2 bits per pixel (bpp), while the area efficiency of this
architecture is higher than that of the word-level architecture since
the required hardware resources for the EBC are reduced.

Some complete JPEG 2000 systems are realized [7][8][9]. In [7],
an 81 MSamples/sec (MS/s) encoder system is implemented. The
word-level EBC architecture is used to encode one DWT coefficient
per cycle. The pre-compression rate-distortion optimization (pre-
RDO) algorithm[10] is developed to determine the truncation potions
before coding. Although the computation power of the EBC is
saved since the the truncated bit-planes are skipped, the processing
efficiency of the EBC is quite low due to most part of processing
elements in the EBC are idled for the skipped bit-planes. The NTU’s
124 MS/s codec system[9] uses three word-level EBC modules to
encode or decode three DWT coefficients in a cycle. The level-
switched scheduling is developed to eliminate tile memory between
the DWT and the EBC. Therefore, the DWT and the EBC are
pipelined at pixel-level, not tile-level. The memory bandwidth of this
system is reduced since the DWT coefficients transmission through
tile memory is eliminated. The post-RDO controller is also implement
on this chip. The Sanyo’s codec[8] achieves 70 MS/s for encoder and
35 MS/s for decoder by using two bit-planes parallel architecture.
Three independent cores in which two for encoder core and one

428

Code-block Boundary

Sign
Bit-plane 9
Sample
oefficient
v Stripe
Boundary
Stripe 15 @ Current Coefficient
Code-block

ONeighbor Coefficients

Fig. 3. Embedded block coding algorithm in JPEG 2000.

for decoder core are implemented in this chip. There are several
issues to be considered for the above architectures. Firstly, processing
efficiency is quiet low for the word-level architecture. Secondly, not
only power consumption but also hardware resources are wasted
for processing those bit-planes that are discarded finally. Thirdly,
although partial bit-plane parallel architecture can increase increase
processing efficiency, the optimized numbers of parallel bit-planes
for different applications (different operational range of bit rate) is
an important issue. Besides, the optimization for the dataflow between
the DWT and the EBC should also be discussed since only portion
of bit-planes of DWT coefficients is accessed.

In this paper, an unified design methodology for the bit-plane
parallel EBC architecture is presented. The bit-plane parallel EBC
is the generalization of the EBC architectures from two bit-plane
parallel to all bit-planes parallel. A detailed analysis about processing
efficiency for the EBC with various numbers of parallel bit-planes
will be shown. The experimental results show that the throughput
of an EBC with four bit-planes parallel is higher than a word-level
EBC with 10 bit-planes parallel by 1.5 times at 1 bpp. Dataflow
conversion and embedded compression are proposed to reduce tile
memory bandwidth for the tile-level pipeline scheduling between the
DWT and the EBC. Based on the analysis and proposed techniques,
a JPEG 2000 codec is implemented on 6.1 nm? with 0.18 um CMOS
technology dissipating 180 mW at 1.8 V and 60 MHz. It is capable of
achieving 50 MS/s for lossless coding and 78 MS/s for lossy coding
at 1 bpp. An EBC with bit-plane scalable architecture is implemented
in this chip to process four bit-planes in parallel. This architecture
can scalably process either multiple code-blocks or one code-block
at a time to achieve fully hardware utilization.

The paper is organized as follows. The EBC algorithm is reviewed
in Sec. II. Some issues to design a system with bit-plane parallel
architecture are discussed in Sec. III. The analysis about bit-plane
parallel architecture and the techniques to reduce tile memory band-
width are described in Sec. IV. Section VI shows the implementation
results of a JPEG 2000 codec. Finally, Section VII concludes this

paper.

II. EMBEDDED BLOCK CODING ALGORITHM

EBC is a two-tiered algorithm, as shown in Fig. 1. The tier-1 is
the EBC, which is composed of the Context Formation (CF) and
the Arithmetic Encoding (AE). The bit stream formed by the EBC
is called the embedded bit stream and is passed to the tier-2 for
rate control. Given a target bitrate, tier-2 truncates the embedded bit
streams to minimize the overall distortion. The EBC algorithm is
elaborated as follows.

The basic coding unit of the EBC is a code-block with typical size
of 64 x 64 or 32 x32. An N x N code-block is further divided into
stripes, with size of 4 x N. The scan order is first column by column
within a stripe and then stripe by stripe, as shown in Fig. 3. The
order of bit-plane coding is from the Most Significant Bit (MSB)

bit-plane of the code-block to the Least Significant Bit (I.SB) bit-
plane. Each bit-plane requires three coding passes, the significant
propagation pass (Pass 1), the magnitude refinement pass (Pass 2),
and the cleanup pass (Pass 3). The MSB bit-plane is an exception,
which requires only the Pass 3. A context window, as shown in Fig.
3, is involved while modeling the context of a sample coefficient. The
sample coefficient to be coded lies in the center of the context window
and is denoted as C. The eight-connected neighbors of C are further
divided into horizontal (H), vertical (V), and diagonal (D) groups.
For the CF, a binary state variable called significant state is defined
for a coefficient to indicate whether or not a non-zero magnitude bit
has been coded in previous bit-planes or passes. Then, the coding
pass of C is determined by the significant states of C itself and its
neighbors. If C has been significant, it belongs to the Pass 2. If C
has not been significant but at least one of its neighbors has been
significant, it belongs to the Pass 1; otherwise, it belongs to the Pass
3.

Each sample coefficient is encoded or decoded by the arithmetic
coder (AC). Nineteen contexts are used to adapt the probability
models of the AC. Detailed information on the context mapping can
be found in [1].

III. DESIGN ISSUES

There are three issues to design a codec with bit-plane scalable
architecture, which are discussed in the subsequent subsections.

A. Unavaliable effective bit-Planes before coding

The rate control in JPEG 2000 is a post-RDO algorithm. All of the
coding passes in a code-block must be losslessly encoded regardless
of target bit rate. A truncation point, which truncates a code-block
at a coding pass in a bit-plane, can not be obtained before coding.
Therefore, those bit-planes, which are truncated by the post-RDO
finally, are still be processed by the EBC. Unnecessary computations
not only wastes power consumption but also decreases the throughput
for the EBC. Therefore, an algorithm to determine truncation points
before coding is an important issue.

B. Redundant access for DWT coefficients

The dataflows of the DWT and the EBC are quit different; the DWT
generates the coefficients in a subband-interleaving manner while the
EBC encodes a code-block within one subband at a time. Therefore,
tile-level pipeline scheduling between the DWT and the EBC is used
in the previous works[11][7][8]. The tile memory, which enables
tile-level pipeline scheduling, is implemented with either on-chip
SRAM][11] or off-chip SDRAM]7][8]. The conventionally memory
organization for storing DWT coefficients is word by word since the
DWT is a word-level algorithm. For an accessed DWT coefficient
from memory, the redundant access of the bit-planes that will be
truncated finally introduces unnecessary power consumption and
increase memory bandwidth. Besides, the coefficients in a code-block
may be accessed more than one time if this code-block is processed
by more than one time. The multiple accesses for a coefficient
also introduce power consumption and increase memory bandwidth.
Therefore, a proper memory organization should be considered to
reduce these kinds of redundant accesses.

C. Code-block is processed multiple times

For the word-level EBC, this architecture processes one coefficient
per cycle and generates state variables on-the-fly. However, for the
bit-plane parallel EBC, if the numbers of bit-planes of a code-block
are larger than that the EBC can handle at a time, only a portion of

429

Blank
bit-plane
s
—» Embedded

EBC > Bit-streams

Code-block

Fig. 4. Concept of pre-compression rate-distortion optimization.

Coefficient
Sign 71< 5 5 . NN
Bit-plane N4 N_/1 N_/ ALALA AL
) 1
\ I !
010|010[0C 00
0 1 0 0 —01000
N e N AAC A AU
= N
o[oloojcooc Rt
Magnitude N N/ N/ MNAN AU
Bit-plane 74 N
il olololo(ococ Bt
N N N NAAAA [—
data
0]0/0{c/0/000 T .
NAN AN NACACA
Word-level Bit-plane-level
Dataflow Dataflow Memory
nnnnn b1 R word
Memory Data Organization
Fig. 5. The concept of dataflow conversion.

bit-planes of a code-block are encoded. For example: The code-block
has five bit-planes to be processed while the EBC only can process
four bit-planes. Therefore, either on-chip SRAM or external SDRAM
is required to store the remained bits of the coefficients. The on-chip
SRAM increases the silicon cost while off-chip SDRAM increases
external memory bandwidth.

IV. PROPOSED ALGORITHMS

In this section, we proposed four techniques to overcome the above
problems. The pre-compression rate-distortion optimization algorithm
decides the truncation points for each code-block before coding,
and therefore the truncated bit-planes can be skipped for the EBC.
The dataflow conversion either converts word-level dataflow for the
DWT to bit-plane-level dataflow for the EBC for the encoder or vise
versa for the decoder to reduce tile memory bandwidth by passing
the effective bit-planes and rejecting unnecessary bit-planes. The
embedded compression with low complexity algorithm compresses
the bit-plane-level data to reduce memory bandwidth. The bit-plane
parallel context formation enables parallel processing.

A. Pre-Compression Rate-Distortion Optimization

To solve the problem of unavaliable effective bit-planes before
coding, we have developed a pre-compression rate-distortion op-
timization (pre-RDO) algorithm[10][12]. By scanning a tile once,
this algorithm can estimate the rate and calculate distortion for the
limited numbers of coding passes without any information from
the EBC. Figure 4 shows the concept of pre-RDO algorithm. By
determing truncation points before coding, the coputations of the EBC
are reduced by skipping the truncated bit-planes as well as blank
bit-plans. Experimental results show that the developed algorithm
reduces computation for the EBC by 80% in average at 0.8 bpp. The
average PSNR degrades about 0.1~0.3 dB in average.

. Stripe
tripe 0
tripe 1 0 0L0L0 0
tripe 2 >< =%
tripe 3 >9(OLO0ROLOAO
H [N)
o ojl1hoA0j0
>'< >e
Ohr1 A0 40
sign 7
00000000p010000100000000 |
i v v v
Stripe_15 RLC Result 0 1001100001 0
Bit-plane

Fig. 6. Run-length coding is applied to encode the bit-plane.

B. Dataflow Conversion

Although pre-RDO can determine which bit-plane should be dis-
carded before coding to reduce the compuations of the EBC, the
memory bandwidth and access power of the tile memory can not
be saved due to the conventional memory organization, which store
DWT coefficients word by word. The access of truncated bit-planes
is unnecessary. To solve this problem, the bit-plane grouping and
sign scatting algorithm are used. The main idea is to convert DWT
coeflicients into separate bit-planes. Therefore, only the bit-planes
to be coded are accessed. The concept of dataflow conversion is
illustrated with Fig. 5. The sign bit of each coefficient is scattered to
next of each coefficient’s first significant bit. All bits in a bit-plane
are grouped into one memory word. The order to group bit-plane data
is the same as the scan order of the EBC, i.e. column by column in a
stripe and stripe by stripe in a bit-plane. The grouped memory word
for each bit-plane are stored with an interleaving manner, i.e. in this
example, the grouped MSB bit-plane of four coefficients is followed
by next bit-plane. This addressing method is to let locations of these
bit-plane data belong to the same coefficients be as continuous as
possible. The window size to group coefficients is dependent on the
used memory architecture.

The decoding procedure is simple. If a bit 1 is encountered when
decoding a certain bit-plane, the next bit is sign bit if there is no
significant bit in the upper bit-plans, otherwise, the next bit is the
magnitude bit of the next coefficient. With these grouping methods,
the EBC can prevent truncated bit-planes from being accessed such
that memory bandwidth and access power are reduced.

C. Embedded Compression

To further reduce the tile memory bandwidth, an embedded com-
pression with low complexity algorithm could be used to compress
the bit-plane data for the dataflow conversion. Statistical analysis
shows that 45% to 60% of columns are blank in a code-block. It
implies that the run-length coding (RLC) could have good compres-
sion efficiency while maintains low computation complexity. Figure 6
shows the RLC applied to encode the data bits. If all data bits
in continuous two columns are all zero, the conding result is 707,
otherwise, the coding result is ”1” and is followed by raw data bits.
Note that the sign bit is also included. The compression ratio is about
from 1.35 to 1.7, which is just slightly smaller than that of the EBC
(from 1.5 to 2). However, the RLLC has much less complexity than
that of the EBC.

D. Bit-plane Parallel Context Formation Algorithm

1) Scan Order: There are two data dependency problem for the
EBC algorithm defined in JPEG 2000 standard. One is intra bit-plane
dependency and the other is inter bit-plane dependency. As shown in

430

Code-Block
.y
[N OCN NN ON N
R e e et
*
Bit-plane 9
7 Bipmes
7 misims2

(- @

0000008000
hg:i0:

e
00000
1000080080

&

Bit-plane 1
Bit-plane 0

— Decoding Pass] — — » Decoding Pass2 and Pass3\ Stripe
Boundary

O Passl © Pass2 or Pass3 O Un-coded

Fig. 7. Proposed column-switch scan order in a bit-plane.

Fig 3, the coding pass and the context of C depend on the coding
status of the eight surrounding neighbors in the same bit-plane, which
is called intra bit-plane dependency, and depend on the coding status
of eight surrounding neighbors in the upper bit-planes, which is called
inter bit-plane dependency.

In this section, we proposed a column-switching scan order to solve
above two dependency problems. The scan order in a bit-plane £, is
illustrated with Fig. 7. The numbers in the circle presents an example
of scanning order. There are two sub-scans, Pass 1 scan in a column
and non-Pass 1 (Pass 2 and Pass 3) scan in a column. The sample
bits are scanned one column by one column in a column-switching
manner. In each sub-scan, only the samples to be scanned are visited
and each visited sample requires one processing cycle. Therefore, the
numbers of processing cycles needed to encode or decode a bit-plane
are equal to the numbers of sample bits in this bit-plane. Note that
the Pass 1 scan precedes the non-Pass 1 scan by one column to solve
intra bit-plane dependency.

For the inter bit-plane dependency problem, it can be solved by
four columns latency between two successive bit-planes, i.e., the (k—
1)-th bit-plane starts to scan when the k-th bit-plane starts to scan
4-th column[6]. Actually, all bit-planes can be aligned at the same
column for the encoder architecture[13]. The fours column latency
is to solve the problem that unavaliable sample values of the upper
bit-plane during the decoding procedure.

2) Parallel Context Formation: In this section, we proposed a bit-
plane parallel context formation algorithm based on the parallel mode
defined in the standard. In parallel mode, the samples that come from
the next stripe are considered insignificant in the CF procedure, and
the arithmetic coder terminates each coding pass.

The essential informations needed for context formation are the
significant contributions from the eight neighbors of the central coef-
ficient (C), s = {h0,h1,v0,v1,d0,d1,d2,d3}, as shown in Fig. 3. Both
the coding pass and the context of C depends on the contributions of
s. Let us define some terms firstly. The value of C and s are denoted
as uc and ug, respectively. The bit value of u, and ys in the bit-plane
k is denoted as u£ and u£. The total numbers of bit-planes in a code-
block is N. Let ks and k, are the start bit-plane and the end bit-plane
that the EBC processes in parallel. If &g is less than N —1, this means
that this code-block has been processed by more than one time. The
contribution of s to the k-th bit-plane of C is represented by (])’Af . For
s whose scan order is after C, its contribution can be determined by

0, (k=N-D1&({p} =0)

b TV ks
P=9 0, (ks <N—1&(py 1Py =0) 1
1, otherwise
where
o Ll k<K
o = O s @

On the other hand, the contribution of s that is scanned before C
is
; (ks =N -1&(p/ ' =1)
, (ks <N =D&} 1 lpp, =1)
(ks =N-1)&(p] =0)&@ =1)&PFPf=1) , 3
. (s <N =D& IR, = 1)&(PE=1)
; otherwise

=
v
|
O = = = =

The coding pass of C, plg is determined by

. 2, py =1
Pe=4 3, prg —0&(E¢s=0) , @
1, otherwise

where the result of > ¢ has a range of 0 to 8.

Except the coding pass of C is obtained by using above equations,
the context of C is also can be generated by the contributions from
the neighbors according to the context table defined in JPEG 2000
standard[1].

For the proposed algorithm, the 1.5 KB state memory is required to
store the indicators of significant state and the indicators of refinement
state and sign bit, in which each cost 0.5 KB (64x64 bits). Note
that the requirement of the state memory is constant no matter how
many code-blocks are processed by the EBC at the same time. For
example: The EBC can process five bit-planes in parallel and there
are three code-blocks to be processed. The first code-block has been
processed once and one bit-plane is remained. The second and the
third code-block have three bit-planes. The remained one bit-plane
of the first code-block, all bit-planes of the second code-block, and
one bit-plane of the third code-block are processed in parallel by the
EBC. Therefore, the state memory, which stores the resulted coding
states of the first code-block in the previous coding, is used for the
first code-block to process the remained one bit-plane, and the state
variables of the second code-block are generated on the fly. For the
third code-block, the resulted coding states are stored back to state
memory for the following processing. Therefore, the requirement of
state memory for one code-block is enough.

V. EXPERIMENTAL RESULTS
A. Processing Efficiency

Figure 8 shows the throughput, which is measured with samples
per cycle, versus bit rate with various numbers of parallel bit-plane
processing , and Figure 9 shows the thumbnail of simulated 8-bit gray
level images. For the conventional word-level EBC, its throughput,
which is 1 Sample/s, is constant over all bit rates. The throughput of
the bit-plane parallel architecture is higher when the bit rate is lower
since most of bit-planes are truncated by the pre-RDO before coding
and the EBC can scalably process the effective bit-planes of either
multiple code-blocks or one code-block. When the bit rate is lower
than 2, even four bit-planes parallel could have higher throughput
than that of the word-level architecture.

B. Tile Memory Bandwidth Reduction

Figure 10 shows the memory bandwidth reduction for the tile
memory by use of the pre-RDO, the dataflow conversion, and the
embedded compression. For the encoding flow, the bandwidth is
reduced since the truncated bit-plans by the pre-RDO are prevented
from accessing from tile memory. At around 3 bpp, which is lossless
point, the reduction comes from the blank bit-planes of each code-
block. The reduction ratio for the decoding flow is higher than that
for the encoding flow. The lower reduction ratio for the encoding

431

Throughput
(Samples/cycle)
5

—e— 7 bit-plane parallel
45

ALY
g | B

AN
AN
RN,
RN i e e

: ST
e T

0 L L L L L L |

—=- 6 bit-plane parallel

—— 5 bit-plane parallel

—=—4 bit-plane parallel

— 3 bit-plane parallel

35
Bit rate(bpp)

Throughput
(Samples/cycle)
5l

——7 bit-plane parallel

45 \ —=—6 bit-plane parallel
4 3 ——5 bit-plane parallel
3.5 —=—4 bit-plane parallel

——3 bit-plane parallel

NARN
MENNN

;

0 0.5 1 1.5 2 2.5 3 35
Bit rate(bpp)

Throughput
(Samples/cycle)
5w

—— 7 bit-plane parallel

\ —#- 6 bit-plane parallel
\ —— 5 bit-plane parallel

4.5

4

MR
SR
AN

—=—4 bit-plane parallel

—- 3 bit-plane parallel

:
:
/

0 0.5 1 1.5 2 2.5

(©)

35
Bit rate(bpp)

Fig. 8. Throughput versus bit rate with various numbers of parallel bit-planes.
(a)Child (b)Hand (¢) Landscape

(®)

Fig. 9.
(b)Hand (3072%2048) (c)Landscape (30722048)

Thumbnails of simulated 8-bit gray images. (a)Child (20483072

Reduction(%)
70 ¢

65 .\

60 *

55 \
50 [osm

4 M \'\
., e

—

—o—Child-Encoder
—e-Hand-Encoder
—o—Landscape-Encoder
—— Child-Decoder
—=-Hand-Decoder

—=—Landscape

35

30 L L L L L L

0 0.5 1 15 P 235 : 3.5
Bitrate(bpp)

Fig. 10. Memory bandwidth reduction for the tile memory by use of pre-
RDO, dataflow conversion, and embedded compression.

e S
| Main Controller |
[
v v v
DWT EBC BSC
Filter CParatllelt Arithmetic Bit-stream
Core on e.x M Coder Buffer
Formation
7y
v
Data Conv. \ \ Data Conv. \
H H
| EC | | RDO }— | EC |
F :
(MEM. IF)
4
v

Fig. 11. System block diagram of JPEG 2000 codec.

flow is due to that the whole tile must be buffered before the pre-
RDO makes decision. Therefore, the all bit-planes except empty bit-
plans are stored at tile memory. Experimental results show that the
bandwidth is reduced by 60% and 45% at 1 bpp for the encoder and
decoder, respectively.

VI. CHIP IMPLEMENTATION

Based on the proposed techniques, a JPEG 2000 codec is im-
plemented. The following sections describe the architectures and
implementation results.

A. System Architecture

Figure 11 shows the system architecture. It contains one DWT
core, one EBC core, one bit-stream controller (BSC), and one RDO
controller. The Data Conv. converts dataflow and embedded com-
pression (EC) compresses data bits. The RDO determines truncation
points before coding. The DWT averagely generates three coefficients

State
Memory
Parallel :
DWT Context Dispa| | gmpedded
Coefficient s teher | | it streams
Line Buffer }~—»
Fig. 12. Embedded block coding architecture.

432

TABLE I
COMPARISON OF JPEG 2000 SYSTEMS.

Architecture Technology Area Frequency

Throughput
(wm) (mm?) WMHz)

(MS/s)

Power
(i)

Performance Index
Switches (MSample/MHz -mm?)

Tile Code-Block DWT
Size Size Level

Coding

60/201
70/351
124/1241
78/78

0.18 5.4 150
0.18 13/6.51 54
0.18 20.1 42
0.18 6.1 60

Amphion [11]
Sanyo [8]
NTU [9]

This work

280

N/A 3

384 256 64 3 P
180 3

D.P 0.066/0.0221
P 0.1/0.17

0.148/0.1481
P 0.218/0.2181

128 32 5
4096 32

256 64

T Encoder/Decoder. D:Default mode. P:Parallel mode.

Fig. 13. Micrograph of JPEG 2000 codec.

per cycle to match the throughput of the EBC. The tile memory is
implemented with off-chip SDRAM.

Figure 12 shows the detailed architecture of the EBC. This archi-
tecture is capable of processing four bit-planes in parallel. There is
no pipeline between context formation and arithmetic coder (AC).
Each AC can process one context per cycle. Basically, one AC is
dedicated to a bit-plane. Extra two AC are used to handle the bit-
planes with more than one symbol. In some case, more than two bit-
planes generate two symbols. In this case, extra cycles are needed
to processes these contexts. Experimental results show that the cycle
overhead is about 2.1% of total processing cycles.

B. Implementation Results and Comparisons

A JPEG 2000 codec is implemented on 6.1 mm?® with 0.18 um
CMOS technology dissipating 180 mW at 1.8 V and 60 MHz. It is
capable of achieving 50 MS/s for lossless coding and 78 MS/s for
lossy coding at 1 bpp. This chip is fabricated by TSMC and Fig. 13
shows the chip photo. Table I concludes the chip features and shows
the comparisons with previous works. The throughput of this work
shown in this table is 78 MS/s at 1 bpp, which is a typical rate for
high quality still image coding. For lossless coding, the throughput
is about 50 MS/s

A performance index (PI), defined as throughput per unit area at
1 MHz, is used to evaluate the area efficiency. The higher PI means
more efficient you use silicon area. This work has highest PI due to
the bit-plane scalable architecture. The PI of this work for lossless
coding is 0.138(= 605X06'1), which is close to that of the word-level
architecture[9]. The implementation results show that this chip is
more area-efficient than the previous works.

VII. CONCLUSION

In this paper, a area-efficient JPEG 2000 codec is implemented on
6.1 mm® with 0.18 gm CMOS technology dissipating 180 mW at 1.8
V and 60 MHz. It is capable of achieving 50 MS/s for lossless coding
and 78 MS/s for lossy coding at 1 bpp. Four techniques are used
to implement this chip. The pre-RDO determines truncation points

before coding to reduce computations for the EBC. The dataflow
conversion converts word-level dataflow of the DWT to bit-plan-level
dataflow for the EBC. The embedded compression reduces the tile
memory bandwidth by use of run-length coding for the bit-plane-level
data bits. The bit-plane parallel context formation enables scalable
bit-plane coding. Experimental results shows this chip has higher
area efficiency than the previous works.

REFERENCES

[11 JPEG 2000 Part I: Final Draft International Standard (ISO/IEC
FDIS15444-1). ISO/IEC JTC1/SC29/WGI1 N1855, Aug. 2000.

[2] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, “Analysis and
architecture design of block-coding engine for EBCOT in JPEG 2000,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 3, pp. 219-230,
Mar. 2003.

[3] J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, “Efficient pass-parallel for
EBCOT in JPEG 2000,” in Proc. IEEE Int. Symp. Circuits. Syst., vol. 1,
Scottsdale, Arizona, May 2002, pp. 773-776.

[4] H.-C. Fang, Y.-W. Chang, and L.-G. Chen, “Area efficient architecture
for the embedded block coding in JPEG 2000,” in Proc. [EEE Interna-
tional Midwest Symposium on Circuits and Systems, Hiroshima, Japan,
July 2004.

[5] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-J. Lian, and L.-G. Chen,
“Parallel EBCOT architecture for JPEG 2000,” [EEE Trans. Circuits
Syst. Video Technol., no. 9, pp. 1086-1097, sep 2005.

[6] Y.-W. Chang, H.-C. Fang, C.-C. Chen, and L.-G. Chen, “Design and
implementation of word-level embedded block coding architecture in
JPEG 2000 decoder,” in IEEE Int. Conf. Acoustics, Speech, Signal
Processing, vol. 2, Toulouse, France, May 2006, pp. 449-452.

[7]1 H.-C. Fang, C.-T. Huang, Y.-W. Chang, T.-C. Wang, P.-C. Tseng, C.-J.

Lian, and L.-G. Chen, “81 MS/s JPEG 2000 single-chip encoder with

rate-distortion optimization,” in [EEE International Solid-State Circuits

Conference Digest of Technical Papers, San Francisco, CA, Feb. 2004,

pp. 328-329.

H. Yamauchi, S. Okada, K. Taketa, Y. Matsuda, T. Mori, T. Watanabe,

Y. Matsuo, and Y. Matsushita, “1440x1080 pixel, 30 frames per second

motion-jpeg 2000 codec for hd-movie transmission,” IEEE J. Solid-State

Circuits, vol. 40, no. 1, pp. 331-341, Jan. 2005.

Y.-W. Chang, H.-C. Fang, C.-C. Cheng, C.-C. Chen, C.-J. Lian, and L.-G.

Chen, “124 Msmples/s pixel-pipelined motion-jpeg 2000 codec without

tile memory,” in [EEE International Solid-State Circuits Conference

Digest of Technical Papers, San Francisco, CA, Feb. 2006, pp. 404—

405.

[10] Y.-W. Chang, H.-C. Fang, C.-J. Lian, and L.-G. Chen, “Novel pre-
compression rate-distortion optimization algorithm for JPEG 2000,” in
Visual Communications and Image Processing, San Jose, California, Jan.
2004, pp. 1353-1361.

[11] CONEXANT. CS6590.
http://www.amphion.com/CS6590.html

[12] Y.-W. Chang, H.-C. Fang, C.-C. Cheng, C.-C. Chen, and L.-G. Chen,
“Pre-compression quality control algorithm for jpeg 2000, IEEE Trans.
Image Processing, to appear.

[13] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-J. Lian, and L.-G. Chen,
“Parallel EBCOT architecture for JPEG 2000,” [EEE Trans. Circuits
Syst. Video Technol., no. 9, pp. 1086-1097, sep 2005.

8

_

[9

—

[Online]. Available:

433

